Nitric oxide radical suppresses replication of wild-type dengue 2 viruses in vitro.
نویسندگان
چکیده
Nitric oxide is well accepted as one of the defenses for inhibiting viral dissemination. Macrophages and cells in the macrophage lineage are professional nitric oxide producers which sub-serve as target for dengue virus. The interaction between nitric oxide and dengue virus in such target cell is unknown. In this report, the impact of nitric oxide on infectious dengue virus serotype 2 production and RNA replication was investigated in vitro. Primary isolates of dengue virus serotype 2 from dengue patients were replicated in mouse neuroblastoma cells in the presence of an exogenous nitric oxide donor, s-nitroso-N-acethylpennicillamine, SNAP, at the concentration of 50 or 75 or 100 microM. Nitric oxide inhibited viral replication in a dose and a multiplicity of infection dependent manner. Nitric oxide from 50 and 75 microM SNAP delayed and suppressed replication of dengue virus isolates while higher concentration of nitric oxide, 100 microM SNAP, completely inhibited production of infectious particles up to 36 hr study. Twenty-four out of forty tested isolates, 60%, were susceptible to 50 microM SNAP inhibitory effect. The mechanism of inhibition was investigated at the level of RNA synthesis and was found that RNA production was suppressed which correlated to production of the infectious particles. Down-regulation of the RNA synthesis resulted in reduction of protein synthesis which was detected by lower level of NS1 protein synthesis using immunoblotting. In conclusion, nitric oxide from exogenous nitric oxide donor down regulated replication of dengue virus serotype 2 isolates from dengue patients. The suppression was clearly shown at the level of viral RNA and protein synthesis resulting in reduction of viral progenies production. This phenomenon implies that nitric oxide may serve as a defense which diminishes viral load in patients.
منابع مشابه
Replication Characteristics of Herpes Simplex Virus Type-1 (HSV-1) Recombinants in 3 Types of Tissue Cultures
A complication in the analysis of the role of ICP34.5 gene in the herpes simplex virus type-1 (HSV-1) lifecycle is the presence of overlapping antisense gene, open reading frame P (ORF P), which is also deleted in HSV-1 ICP34.5 negative mutants. A HSV-1 wild type strain (17+) ICP34.5/ORF P deletion mutant (1716) is totally avirulent in animal models and impaired in a number of in vitro function...
متن کاملCharacterization of Recombinant Dengue-2 Virus Derived from a Single Nucleotide Substitution in the 5′ Noncoding Region
Variants of wild-type dengue serotype 2 (DEN-2) virus containing nucleotide substitutions at positions 14, 15, or 57 in the 5' NCR were constructed by PCR-mediated site-directed mutagenesis. All three viruses containing a single point substitution demonstrated attenuation phenotype as evidenced by decreases replication and plaque size in cell culture assay. All three variants were less neurovir...
متن کاملNitric oxide-generating compound GSNO suppresses porcine circovirus type 2 infection in vitro and in vivo
BACKGROUND Nitric oxide (NO), an important signaling molecule with biological functions, has antimicrobial activity against a variety of pathogens including viruses. To our knowledge, little information is available about the regulatory effect of NO on porcine circovirus type 2 (PCV2) infection. This study was conducted to investigate the antiviral activity of NO generated from S-nitrosoglutath...
متن کاملNitric oxide inhibition of coxsackievirus replication in vitro.
Nitric oxide is a radical molecule with antibacterial, -parasitic, and -viral properties. We investigated the mechanism of NO inhibition of Coxsackievirus B3 (CVB3) replication in vitro by determining the effect of NO upon a single replicative cycle of CVB3 grown in HeLa cells. Transfection of inducible NO synthase cDNA into HeLa cells reduces the number of viral particles produced during a sin...
متن کاملDengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells.
The immunopathogenesis of dengue haemorrhagic fever and dengue shock syndrome is thought to be mediated by a variety of host factors. Enhancing antibodies are one of the key regulating molecules. These antibodies, via antibody-dependent enhancement (ADE) of infection, are able to facilitate dengue virus (DENV) growth in Fc-bearing host cells. The mechanism of ADE-enhanced DENV production is bel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medical virology
دوره 77 1 شماره
صفحات -
تاریخ انتشار 2005